1,008 research outputs found

    Imaging the Small-Scale Circumstellar Gas Around T~Tauri Stars

    Get PDF
    We have detected circumstellar molecular gas around a small sample of T Tauri stars through aperture synthesis imaging of CO(2-1) emission at ~2-3'' resolution. RY Tauri, DL Tauri, DO Tauri, and AS 209 show resolved and elongated gaseous emission. For RY Tau, the deconvolved, half-maximum radius along the direction of elongation, PA~48deg, is 110 AU. Corresponding radii and orientations for the other sources are: DL Tau -- 250 AU at PA~84deg; DO Tau -- 350 AU at PA~160deg; AS 209 -- 290 AU at PA~138deg. RY Tau, DL Tau, and AS 209 show velocity gradients parallel to the elongation, suggesting that the circumstellar material is rotating. RY Tau and AS 209 also exhibit double-peaked spectra characteristic of a rotating disk. Line emission from DO Tau is dominated by high-velocity blue-shifted gas which complicates the interpretation. Nevertheless, there is in each case sufficient evidence to speculate that the circumstellar emission may arise from a protoplanetary disk similar to that from which our solar system formed.Comment: TeX file with associated macros, no figures; AJ in press. Also available as a compressed postscript file (including figures) by anonymous ftp at ftp://cougar.jpl.nasa.gov/pub/davidk/preprints/COinTTS.ps.

    Keck Imaging of Binary L Dwarfs

    Get PDF
    We present Keck near-infrared imaging of three binary L dwarf systems, all of which are likely to be sub-stellar. Two are lithium dwarfs, and a third exhibits an L7 spectral type, making it the coolest binary known to date. All have component flux ratios near 1 and projected physical separations between 5 and 10 AU, assuming distances of 18 to 26 pc from recent measurements of trigonometric parallax. These surprisingly similar binaries represent the sole detections of companions in ten L dwarf systems which were analyzed in the preliminary phase of a much larger dual-epoch imaging survey. The detection rate prompts us to speculate that binary companions to L dwarfs are common, that similar-mass systems predominate, and that their distribution peaks at radial distances in accord both with M dwarf binaries and with the radial location of Jovian planets in our own solar system. To fully establish these conjectures against doubts raised by biases inherent in this small preliminary survey, however, will require quantitative analysis of a larger volume-limited sample which has been observed with high resolution and dynamic range.Comment: LaTex manuscript in 13 pages, 3 postscript figures, Accepted for publication in the Letters of the Astrophysical Journal; Postscript pre-print version available at: http://www.hep.upenn.edu/PORG/papers/koerner99a.p

    Imaging the Haro 6-10 Infrared Companion

    Get PDF
    We present an infrared imaging study of the low-mass pre-main-sequence binary system Haro 6-10. This system is one of a handful in which the optically visible primary has the characteristics of a normal T Tauri star, while the secondary is a so-called "infrared companion" (IRC), a strongly extincted object that emits most of its luminosity in the infrared. A speckle holographic technique was used to produce nearly diffraction-limited images on three nights over a 1 yr period starting in late 1997. The images show that the IRC is obscured and surrounded by a compact, irregular, and variable nebula. This structure is in striking contrast to the well-ordered edge-on disk associated with HK Tauri B, the extincted companion to another T Tauri star of similar age. A new, resolved intensity peak was found 0".4 southwest of the IRC. We suggest that it may represent light scattered by a clump of dusty material illuminated by starlight escaping along an outflow-carved cavity in the IRC envelope. The primary star became fainter and the companion became more extended during the observing period

    Mid-infrared Imaging of a Circumstellar Disk Around HR 4796: Mapping the Debris of Planetary Formation

    Get PDF
    We report the discovery of a circumstellar disk around the young A0 star, HR 4796, in thermal infrared imaging carried out at the W.M. Keck Observatory. By fitting a model of the emission from a flat dusty disk to an image at lambda=20.8 microns, we derive a disk inclination, i = 72 +6/-9 deg from face on, with the long axis of emission at PA 28 +/-6 deg. The intensity of emission does not decrease with radius as expected for circumstellar disks but increases outward from the star, peaking near both ends of the elongated structure. We simulate this appearance by varying the inner radius in our model and find an inner hole in the disk with radius R_in = 55+/-15 AU. This value corresponds to the radial distance of our own Kuiper belt and may suggest a source of dust in the collision of cometesimals. By contrast with the appearance at 20.8 microns, excess emission at lambda = 12.5 microns is faint and concentrated at the stellar position. Similar emission is also detected at 20.8 microns in residual subtraction of the best-fit model from the image. The intensity and ratio of flux densities at the two wavelengths could be accounted for by a tenuous dust component that is confined within a few AU of the star with mean temperature of a few hundred degrees K, similar to that of zodiacal dust in our own solar system. The morphology of dust emission from HR 4796 (age 10 Myr) suggests that its disk is in a transitional planet-forming stage, between that of massive gaseous proto-stellar disks and more tenuous debris disks such as the one detected around Vega.Comment: 9 pages, 4 figures as LaTex manuscript and postscript files in gzipped tar file. Accepted for publication in Astrophysical Journal Letters. http://upenn5.hep.upenn.edu/~davidk/hr4796.htm

    The Inner Rings of Beta Pictoris

    Get PDF
    We present Keck images of the dust disk around Beta Pictoris at 17.9 microns that reveal new structure in its morphology. Within 1" (19 AU) of the star, the long axis of the dust emission is rotated by more than 10 degrees with respect to that of the overall disk. This angular offset is more pronounced than the warp detected at 3.5" by HST, and in the opposite direction. By contrast, the long axis of the emission contours at ~ 1.5" from the star is aligned with the HST warp. Emission peaks between 1.5" and 4" from the star hint at the presence of rings similar to those observed in the outer disk at ~ 25" with HST/STIS. A deconvolved image strongly suggests that the newly detected features arise from a system of four non-coplanar rings. Bayesian estimates based on the primary image lead to ring radii of 14+/-1 AU, 28+/-3 AU, 52+/-2 AU and 82+/-2 AU, with orbital inclinations that alternate in orientation relative to the overall disk and decrease in magnitude with increasing radius. We believe these new results make a strong case for the existence of a nascent planetary system around Beta Pic.Comment: 5 pages, 2 figures, PDF format. Published in ApJL, December 20,200

    A Pulsed Eddy Current Method for Examining Thin-Walled Stainless Steel Tubing

    Get PDF
    A bellows is fabricated from a 12-in. section of type 321 or type 216 stainless steel tubing. In order to ensure that the bellows will survive the rigors of the production environment, it is essential that the tubing be free of all “scratch like” defects. A feasibility study was conducted to determine if an eddy current method could be developed to nondestructively examine this tubing

    Millimeter-Wave Aperture Synthesis Imaging of Vega: Evidence for a Ring Arc at 95 AU

    Get PDF
    We present the first millimeter-wave aperture synthesis map of dust around a main sequence star. A 3'' resolution image of 1.3 mm continuum emission from Vega reveals a clump of emission 12'' from the star at PA 45 deg, consistent with the location of maximum 850 micron emission in a lower resolution JCMT/SCUBA map. The flux density is 4.0+/-0.9 mJy. Adjacent 1.3 mm peaks with flux densities 3.4+/-1.0 mJy and 2.8+/-0.9 mJy are located 14'' and 13'' from the star at PA 67 deg and 18 deg, respectively. An arc-like bridge connects the two strongest peaks. There is an additional 2.4 +/-0.8 mJy peak to the SW 11'' from the star at PA 215 deg and a marginal detection, 1.4+/-0.5 mJy, at the stellar position, consistent with photospheric emission. An extrapolation from the 850 micron flux, assuming F_{1.3mm-0.85mm} proportional to lambda^{-2.8}, agrees well with the total detected flux for Vega at 1.3 mm, and implies a dust emissivity index, beta, of 0.8. We conclude that we have detected all but a very small fraction of the dust imaged by SCUBA in our aperture synthesis map and that these grains are largely confined to segments of a ring of radius 95 AU.Comment: 4 pages, 1 figure, 1 table, accepted for publication in Astrophysical Journal Letter

    Radial Distribution of Dust Grains Around HR 4796A

    Get PDF
    We present high-dynamic-range images of circumstellar dust around HR 4796A that were obtained with MIRLIN at the Keck II telescope at lambda = 7.9, 10.3, 12.5 and 24.5 um. We also present a new continuum measurement at 350 um obtained at the Caltech Submillimeter Observatory. Emission is resolved in Keck images at 12.5 and 24.5 um with PSF FWHM's of 0.37" and 0.55", respectively, and confirms the presence of an outer ring centered at 70 AU. Unresolved excess infrared emission is also detected at the stellar position and must originate well within 13 AU of the star. A model of dust emission fit to flux densities at 12.5, 20.8, and 24.5 um indicates dust grains are located 4(+3/-2) AU from the star with effective size, 28+/-6 um, and an associated temperature of 260+/-40 K. We simulate all extant data with a simple model of exozodiacal dust and an outer exo-Kuiper ring. A two-component outer ring is necessary to fit both Keck thermal infrared and HST scattered-light images. Bayesian parameter estimates yield a total cross-sectional area of 0.055 AU^2 for grains roughly 4 AU from the star and an outer-dust disk composed of a narrow large-grain ring embedded within a wider ring of smaller grains. The narrow ring is 14+/-1 AU wide with inner radius 66+/-1 AU and total cross-sectional area 245 AU^2. The outer ring is 80+/-15 AU wide with inner radius 45+/-5 AU and total cross-sectional area 90 AU^2. Dust grains in the narrow ring are about 10 times larger and have lower albedos than those in the wider ring. These properties are consistent with a picture in which radiation pressure dominates the dispersal of an exo-Kuiper belt.Comment: Accepted by Astrophysical Journal (Part1) on September 9, 2004. 13 pages, 10 figures, 2 table

    A Single Circumbinary Disk in the HD 98800 Quadruple System

    Get PDF
    We present sub-arcsecond thermal infrared imaging of HD 98800, a young quadruple system composed of a pair of low-mass spectroscopic binaries separated by 0.8'' (38 AU), each with a K-dwarf primary. Images at wavelengths ranging from 5 to 24.5 microns show unequivocally that the optically fainter binary, HD 98800B, is the sole source of a comparatively large infrared excess upon which a silicate emission feature is superposed. The excess is detected only at wavelengths of 7.9 microns and longer, peaks at 25 microns, and has a best-fit black-body temperature of 150 K, indicating that most of the dust lies at distances greater than the orbital separation of the spectroscopic binary. We estimate the radial extent of the dust with a disk model that approximates radiation from the spectroscopic binary as a single source of equivalent luminosity. Given the data, the most-likely values of disk properties in the ranges considered are R_in = 5.0 +/- 2.5 AU, DeltaR = 13+/-8 AU, lambda_0 = 2(+4/-1.5) microns, gamma = 0+/-2.5, and sigma_total = 16+/-3 AU^2, where R_in is the inner radius, DeltaR is the radial extent of the disk, lambda_0 is the effective grain size, gamma is the radial power-law exponent of the optical depth, tau, and sigma_total is the total cross-section of the grains. The range of implied disk masses is 0.001--0.1 times that of the moon. These results show that, for a wide range of possible disk properties, a circumbinary disk is far more likely than a narrow ring.Comment: 11 page Latex manuscript with 3 postscript figures. Accepted for publication in Astrophysical Journal Letters. Postscript version of complete paper also available at http://www.hep.upenn.edu/PORG/web/papers/koerner00a.p
    • …
    corecore